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SUMMARY

The paper presents a numerical method useful to describe unsteady three-

dimensional flow fields within turbomachinery stages. The method solves the

compressible, time-dependent, Euler conservation equations with a finite-volume,

flux-splitting, total-variation-diminishing, approximately factored, implicit scheme.

Multiblock composite gridding is used to partition the flow field into a specified

arrangement of blocks with static and dynamic interfaces. The code is optimized to

take full advantage of the processing power and speed of the Cray Y/MP supercomputer.

The method is applied to the computation of the flow field within a single-stage,

axial flow fan, thus reproducing the unsteady three-dimensional rotor-stator

interaction.
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NOMENCLATURE

quasi-linear matrices

.th

strength of 3 wave

speed of jth wave

total internal energy

internal energy

flux vectors

unknown vector

total enthalpy

enthalpy

leading edge i index

trailing edge i index

space discretization indices

Jacobian

limiter

left eigenvector

Mach number

plane index
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maximum block i count

maximum block j count

maximum block k count

pressure

right eigenvector

residual vector

time

contravariant velocity components

velocity components

Cartesian coordinates

specific heat ratio

limiter parameters

curvilinear coordinates

time step

mesh size

time discretization parameter

summation over positive wave speeds

summation over negative wave speeds

density

space discretization parameter

Subscripts:

1 left

r right

Superscript:

n time level

INTRODUCTION

The numerical methods for the simulation of single-domain, steady, three-

dimensional flow fields developed over the past years are now widely used within a

design environment. These methods include both Euler (Denton 1983; Van Hove 1983)

and Navier-Stokes (Dawes 1986 a,b, 1987; Hah 1984, 1986; Shamroth et al. 1982; Roscoe

et al. 1984; Weinberg et al. 1986; and Moore 1985) solvers. Although the Navier-

Stokes methods can produce better computational results, their use as a design tool

appears to be certainly more difficult, due to the increased number of parameters

influencing the solution accuracy. Analyses of flows through isolated rows can be

used to study many of the aerodynamic phenomena in turbomachinery, but such analyses

yield no information regarding the unsteadiness arising from the interaction of

rotating and stationary blade rows.



Since the flow within a turbomachine is extremely complex, computational methods
can be used to great advantage in understanding such flows. An accurate analysis of
the flow associated with rotating and stationary row configurations can be very help-
ful in optimizing the performance of the whole turbomachine. Within each stage,
rotor and stator rows alternate and thus produce particularly strong interactions.
As shownby Dring et al. (1982), the temporal pressure fluctuation near the leading
edge of the rotor can be as muchas 72 percent of the exit dynamic pressure in a
rotor-stator interaction problem with a 15-percent chord length axial gap. Numerical
methods to simulate multidomain, unsteady, three-dimensional flow fields appear
therefore to be particularly interesting. The present paper describes the develop-
ment of one of these new numerical methods.

The simulation of the rotor-stator interaction problem needs the introduction of
a particularly complex flow model. The problem is assumedto be governed by the
three-dimensional Euler conservation equations, written in unsteady, compressible
form, with the gas density, velocity, and energy as the basic variables. These equa-
tions have to be solved in a particularly complex flow domain. Multi-blade-passage
and multi-blade-row configurations have to be considered to simulate the unsteady
rotor-stator interaction. Turbomachinery bladings are usually highly skewed, and the
hub and tip surfaces strongly diverge. Moreover, fixed and movable blade passages
alternate. As a result, both fixed and movable blade passages are boundedby
strongly irregular surfaces, and information must be transferred from a fixed to a
movable reference frame. Furthermore, high flow resolution in both space and time is
required. Finally, the unsteady flow behavior requires the proper treatment of
boundary conditions.

The development of a numerical method resolving the flow model previously
described poses manyprogrammingproblems. The equations have to be solved in a
time-dependent, body-fitted, curvilinear, reference frame. The discretization of a
flow domain including multi-blade-passages and multi-blade-rows requires the intro-
duction of multiblock gridding, where the whole flow domain is partitioned in a
specified arrangement of blocks. These blocks are limited by the boundaries of the
flow domain or by block interfaces. The high resolution in space requires, in addi-
tion to the introduction of a proper grid refinement where higher flow gradients are
expected to occur, a proper selection of block arrangements and individual block
dimensions. The use of a finite-volume space discretization, with an accurate flux-
corrected interface flux-splitting formula and a total-variation-diminishing approach
in limiting the componentsof the interface flux, produces high spatial accuracy. A
multistep, approximately factored, implicit schemeproduces high time accuracy.
Multiblock gridding with static and dynamic grid interfaces is used to properly
discretize the complex flow field. The relative motion of rotor and stator blades is
simulated by using grids that moverelative to each other, with proper treatment at
the interface between blade rows. The implementation of appropriate boundary condi-
tions is based on characteristic concepts. A characteristic variable boundary condi-
tion technique is introduced in the time-dependent, body-fitted reference frame for
inflow, outflow, and solid boundaries, and it is implemented by using phantom cells.

The method is used to model the unsteady flow in a single-stage, transonic,

axial flow fan. The test case considered here does not exhibit such a particularly

strong interaction as that shown in the work of Dring et al. (1982). The rotor and

stator are separated by approximately 85-percent rotor chord at midspan, thus reduc-

ing (but not eliminating) the flow field interactions between blade rows. The compu-

tational domain is made up of two rotor blade passages, each discretized by using

about 13 500 grid points, and three stator blade passages, each discretized by using

8500 grid points. The total number of grid points involved in the rotor-stator
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problem discretization therefore equals 52 500. Approximately 190 vital pieces of
information have to be known for each cell. The computations have been performed on
the NASAAmesCray Y/MP computer. At the beginning of the computations, the rotor-

stator interface orientation is defined with the rotor-blade trailing edges located

midway between the neighboring stator-blade leading edges. The user CPU time

required for each rotor-stator orientation is about 700 sec. The system CPU time is

about 150 sec. The internal memory required is only 2 megawords. The result

obtained after four interface reorientations are presented and compared with laser

anemometer measurements for both rotor (Pierzga and Wood 1985) and stator (Suder

et al. 1987; and Hathaway et al. 1987) rows. The theoretical results are also

compared with other steady-state theoretical results. These comparisons allow a

first assessment of the code prediction capability.

EULER FLOW MODEL

The computation of high Reynolds number, unseparated, unsteady cascade flow

fields can easily be accomplished by solving the Euler conservation equations,

written in unsteady, compressible form. The basic variables are the gas density,

velocity, and energy. Their conservation equations are written in a body-fitted,

time-dependent, curvilinear, reference frame:

F = F(x,y,z,t)

. n(x,y,z,t)

N = N(x,y,z,t)

In vector form,

+ + + = 0
f,t F,F G,Q H,N

where

f = (6, 6u, 6v, 6w, 6E) t

6vU + pF,y, 6wU + pF , 6Uh - pF,t) tF = (a, 6uU + PF,x, ,z

G = (6, 6uV + P_,x' 6vV + p_,y, 6wV + P_,z' 6Vh - p_ t )t

H (g, 6uW + pN 6vW + 6wW + pN 6Wh - pN, t
= ,x' pN,y, ,z' t)

p = (G - l)/GGh = (G - l)_e

h = H - (u 2 + v 2 + w2)/2

e = E - (u 2 + v 2 + w2)/2

The Jacobian

N and N
,z' ,t'

appendix A.

J, the metric quantities F,x, F,y, F z' F,_, _,x' _,y' _ z' _i'n' _,x' N,y,
and the contravariant velocities U,'V, and W are given

The integration requires the introduction of the conditions to be fulfilled

along the boundaries of the domain of interest. The physical flow domain is limited

by inflow, outflow, solid, and periodic boundaries where appropriate boundary condi-

tions are needed. The boundary conditions along inflow, outflow, and solid bound-

aries are defined according to characteristic concepts - i.e., by discretizing the

flow equations written in characteristic form, thus simulating the correct unsteady



flow behavior. Before starting the time integration, proper initial conditions have

to be specified. These conditions can be either a previously computed steady-state

condition or a rough approximation of a steady flow condition.

NUMERICAL METHOD

The integration of the Euler equations, over discrete contiguous volumes, in a

computational space where _X=_Y=_Z=I, yields for the grid point i,j,k the follow-

ing cell-centered finite_volume formula:

f,t = -61F - 6jG - 6kH

where

_i F = Fi+i/2 - FI_I/2

OjG = Gj÷I/2 - Gj_I/2

Ok H = Hk+i/2 - Hk_i/2

The dependent variable vector f represents values at the cell centers, while the

vector flux functions F(f), G(f), and H(f) represent values at the interface

between neighboring cells. The evaluation of the vector flux functions at the cell

interfaces is performed by using the values in the neighboring cells. The interface

terms are computed according to a one-parameter flux-difference-splitting scheme.

For ease of understanding, the flux-difference-splitting scheme is presented

here in one space dimension. As reported in appendix B, a family of high spatial

accuracy formulae is written as follows:

F^I+I/2 = FI+I/2 + (i + #)/4(dF+i+i/2 - dF-i+i/2) + (i - _)/4(dF+i_i/2 - dF-i+3/2)

where dF is the interface flux difference for the collection of waves. The super-

script denotes either positive or negative traveling waves. The option _=1/3 gives

a third-order accurate scheme; the option #=-I gives a fully upwind second-order

accurate scheme. These one-dimensional formulae can be extended to three dimensions

by assuming that all waves travel normal to their respective interfaces.

Spurious oscillations are controlled by using total-variation-diminishing con-

cepts in limiting the components of the interface flux. The use of limiters yields

the following expressions for the corrective flux terms:

= _+ r(J)
dF+i+i/2 Lj(I,-I) i+1/2

* = _+ r(J)
dF ±-1/2 Lj (-i, 1 ) 1+1/2

dF-i+i/2 = _- Lj(l,3)r(J)i+i/2

dF-i÷3/2 = E- Lj(3 l)r (j)' 1+1/2

where r (j)

limiter expressions have been proposed.

appendix C.

is a right eigenvector of the quasi-linear matrix A=F _. Different

These expressions are presented in



The previous equations are finally integrated in time by using an approximately
factored, implicit scheme. The equation is first written in the linearized, dis-
crete, integral delta form

[I + 8_t/(l + _)sn*]'_f n = -_t/(l + _)W n + _/(i + _)_fn-I

Different members of this family have particular relevance. If @=i and @=i/2, the

scheme is three-point backward; if @=i and _=0, it is backward Euler; and if 8=1/2

and @=0, it is trapezoidal. The left side of the previous time-stepping formula is

expressed as follows:

Mn* = 61A ÷* + _iA-* + 6iS +* + 6iS-* + _kC ÷* + _kC-*

where

A÷_ -) = (F_(-),f) n

B÷_-_ = (G+<-),_) _

C+(_) +(-) n= (.

with F ÷(-), G +(-), and H ÷(-) resulting from flux-vector-splitting theory (Steger and

Warming, 1981) while the right side is expressed as

T n = _iF n + _jG n + _k Hn

with F, G, and H resulting from the flux-difference-splitting theory discussed

herein (for further details, see Janus 1989).

For ease of computer programming, the left side operator is split into the

product of two operators:

[I + 8_t/(l + #)M+*]._f ^ = -_t/(l + #)T n + #/(i + _)_fn-I

[I + 8_t/(l + #)M-*]._f n = _f^

fn÷l = fn + _fn

In the solution procedure, since the first operator is applied by moving forward, it

is referred to as the forward operator. The second one is applied by moving backward

and therefore is referred to as the backward operator. The left side operators are

defined as follows:

M÷(-), = _IA÷(-), + _jB+(-)* + _kC+(-)*

Despite factoring, the scheme seems to retain the original unconditional stability.

The implementation of appropriate boundary conditions is based on characteristic

concepts. A characteristic variable boundary condition technique is introduced in a

time-dependent body-fitted reference frame for inflow, outflow, and solid boundaries

(Whitfield and Janus 1989). These boundary conditions are implemented by using

phantom cells, with changes in dependent variables _fn and _f* to be set equal to

zero in these phantom cells. It is pointed out that the outflow boundary condition

uses both the characteristic variable form of the equations and a radial equilibrium



condition where the outflow static pressure at the hub is specified. Better details

on the numerical method can be found in Janus (1989).

COMPUTER CODE

The code was written (Whitfield and Janus 1989) and further optimized for use on

the NASA Ames Cray Y/MP computer. The Cray Y/MP has 8 processors, 32 megawords of

common memory and 256 megawords of solid-state storage, and it allows particularly

efficient computational fluid-dynamic simulations, especially when some guidelines

are followed in the code development.

Because of the in-core memory limitations associated with the computation of

complex three-dimensional flow fields, the overall flow environment is segmented into

several smaller and more manageable interco_unicating flow environments. Figure 1

shows the composite field circumferential and axial partitioning. The global domain

is first circumferentially partitioned by considering different blade passages. The

domain is then axial partitioned by considering different blade rows. Each blade row

is granted limited rotational freedom relative to the adjacent blade rows. When the

domain is completely partitioned, a block referencing scheme is introduced following

the global axes orientation. Within each block, the local axes are assumed to follow

the global axes. The block index limits NI, NJ, and NK are restricted such that

for all blocks within a blade row NI, NJ, and NK remain constant. In addition, NJ

remains constant between blade rows. Variations in NI are permitted between blade

rows. Variations in NK are permitted between blade rows in the limits of a con-

stant circumferential cell count (the product of NK by the number of circumferen-

tial blocks) to be satisfied.

The reduction of in-core (primary) memory requirements calls for the use of

secondary memory, in particular for the use of the Cray's rapid access solid-state

storage device (SSD). The use of computational blocks of differing cell count, and

therefore differing memory requirements, complicates memory utilization. The ribbon

vector dynamic memory management (Janus 1989) stores the entire field on secondary

memory with the exception of the block currently under execution. The method allows

the adjustment of the in-core field length to accommodate each block, regardless of

size, without excess memory words.

The optimization of the processing of the data residing in memory calls for a

reduction of IO wait time. Unblocked data transmission to and from secondary memory

is used. All data contained within the ribbon vector are transferred between in-core

and secondary memory via unblocked standard FORTRAN I/O statements. Proper unblocked

data length has to be provided.

Vectorizing FORTRAN compilers identify inner DO loops that are suitable for

vectorization. Since this enables the loop to run in vector mode, the program runs

much faster. It is important to note that if a loop has even one nonvectorizble

construct the entire loop will not be vectorized. There are a number of constructs

that can decrease the performance of a code. The process of optimization of a code

to obtain peak performance on £he Cray Y/MP can be regarded as the elimination of

these constructs. Some general vectorizing guidelines are provided for this purpose.

The constructs that can decrease the performance of a code are usually referred to as

memory strides, vector lengths, vector dependencies and recursions, logically sepa-

rate vectors within a single array, loops with IF statements, loops with subroutines,

and functions calls.



The term stride refers to the increment in memorybetween successive words
fetched or stored in a vector operation. Bad strides can cause the code to run sig-
nificantly slower. The vector length of an operation is the numberof times an inner
DOloop is executed. Longer vectors are processed more efficiently. DOloops cannot
be vectorized in cases where calculations for one iteration of a loop require results
from a previous iteration (vector dependency). Loops that reference independent
sections of a single array can often appear to have vector dependencies. IF state-
ments prevent loops from being vectorized. Subroutine and function calls prevent
vectorization for many reasons.

The code development has to include somegeneral guidelines. Vectors have to be
thought of as fundamental constructs. Vector operations have to be isolated from
scalar operations. Control statements have to be avoided in loops. Recursion has to

be avoided or moved to outer loops. Power-of-two memory strides have to be avoided.

The array subscripts have to be kept simple and explicit. In nested DO loops, the

inner DO loop has to be made as long as possible. Double precision has to be avoided

unless absolutely necessary. Floating-point arithmetic operations have to be used

instead of integer arithmetic operations (except in array subscripts). System

library routines have to be used when possible.

In the cases of loops that reference independent sections of a single array,

indexing techniques should be used to define two logical arrays within a single

physical array. There are many approaches to vectorizing loops with IF statements.

The method called loop splitting divides a loop into its vectorizable and nonvector-

izable parts. The loop restructuring removes redundant IF statements or restructures

loops with invariant IF statement. The approaches to vectorizing loops with sub-

routine calls include using statement functions, promoting the subroutine into the

loop, or expanding the subroutine to include the loop.

The adopted approximately factored, implicit scheme poses a problem of vector

dependency. The implicit scheme involves point simultaneous solutions and backward

or forward substitutions, and it poses a problem of vector dependency during the

substitution. To circumvent this, a procedure simultaneously processing those cells

lying on a special diagonal plane in the computational space is introduced. Cells

whose indices satisfy the equation of the diagonal plane, expressed as i+j+k=m, where

m is a constant designating the plane level, are computationally independent.

Diagonal plane processing can then be used with the aid of indirect addressing to

facilitate the vectorization of a backward or forward substitution.

The advance of the flow field in time requires two global sweeps through the

global domain, one forward and one backward, in addition, all blocks are forward

swept internally and then they are backward swept internally. An equivalence to the

analogous single-block solution is thus provided. The internal forward sweep within

each block consists of operating on each cell on a diagonal plane, from the lowest

level interior plane to the highest level interior plane, by applying the forward

operator at each computational cell. After information due to communication has been

collected, the in-core resident block is returned to secondary memory and the next

block is transferred in-core. The internal backward sweep is similar, although the

planes are traversing in decreasing rather than in increasing order, and the operator

applied is the backward one.

The communication between blocks is accomplished by considering continuous grid

lines between blocks. Values from within the domain of one block are extracted and

then injected as phantom values in an adjacent block. Since each blade row can

rotate relative to its adjacent blade rows, continuous grid lines are required across



the shearing block-block interface at all time levels. The shearing block-block
interface in physical space yields a dynamic interface in computational space, with a
progressive changing of communication partners. The block-block communication is
properly accomplished by simulating the internal cell communication within the
blocks. The implementation of boundary conditions as well as the transfer between
neighboring blocks is implemented by using phantomcells. This approach wastes a
small amount of memoryfor the offset, fully justified by the simplification of the
problem. Other details about the computer codes can be found in Janus (1989).

RESULTS

The code has been applied to the computation of the flow in a single-stage,
transonic, axial-flow fan. Figure 2 showsthe plane view of the single-stage fan
flow path (Hathaway1986). Figure 3 shows the representative rotor blade sections at
three spanwise locations, hub, midspan, and tip. Figure 4 shows the representative
stator blade sections at three spanwise locations, hub, midspan, and tip. The design
speed of the fan is 16 043 rpm and the corrected mass flow rate is 34 kg/s. The
rotor and stator are separated by approximately 85-percent rotor chord at midspan.
The advantage of the wide axial spacing between blade rows is that the flow field
interactions between the blade rows are reduced, thus decreasing the fan noise.

The rotor is composedof 22 blades of multiple-circular-arc design. The rotor
aspect ratio (averaged) is 1.550. The inlet tip diameter is 51.3 cm; the inlet hub/

tip radius ratio is 0.375; and the rotor tip clearance is 0.5 mm. The stator is

composed of 34 blades of double-circular-arc design. The stator discharges the fluid

axially. The axial chord is a constant 5.6 cm from hub to tip. The tip diameter is

constant at 48.7 cm. The inlet hub/tip radius ratio is 0.500, while the exit hub/tip

radius ratio is 0.530.

Some unsteady experimental results (Hathaway et al. 1987) are presented in

figure 5. The dominant blade-row interactions are due to viscous interactions caused

by the chopping of rotor wakes by the downstream stator blade row. The figure shows

a sequence of plots of the turbulence kinetic energy contours, for a rotor rotation

of one pitch, at midspan. SP denotes rotor shaft position: 50 rotor shaft positions

are specified per rotor pitch. The shaded regions identify rotor wake fluid. After

the stator blade chops the rotor wake, the wake segments move at different speeds

along the stator blade pressure and suction sides. When the rotor wake segments

reach the stator exit, there is a drift between the rotor wake segments originally

part of the same rotor wake.

Calculations have been performed by considering two rotor and three stator blade

row blocks. Each rotor blade row block is made up of NixNJxNK grid points, with

NI=49 planes from inlet to exit, NJ=21 planes from hub to tip, and NK=I3 planes from

suction to pressure side. The leading edge is located at IB=21, while the trailing

edge is located at IE=41. Each stator blade row block is made up of NI=45 planes

from inlet to exit, NJ=21 planes from hub to tip, and NK=9 planes from suction to

pressure side. The leading edge is located at IB=9, while the trailing edge is

located at IE=21. The last five rotor axial planes and the first five stator axial

planes are used for communication between blade rows. The rotor and stator blade

passage computational grids are shown in figure 6.

Calculations are started from a rough approximation of the flow field and the

flow equations are then integrated in time. The selected code options allow second-

order accuracy in time and third-order accuracy in space. The limiter adopted is the



van Leer limiter. The relative motion between blade rows requires 264 time cycles
for each interface reorientation. The computations have been performed on the NASA

Ames Cray Y/MP computer. The user CPU time required for each interface reorientation

is about 700 sec, while the system CPU time is about 150 sec. The internal memory

required in only 2 megawords.

The upstream boundary conditions are specified in terms of a free stream Mach

number, taken equal to 0.5565, and free stream flow angles, defining an inlet axial

direction. The downstream boundary condition is specified in terms of a hub static

pressure, fixed at 1.7869 times the inlet static pressure. These boundary conditions

simulate the real flow conditions with some difficulties. For many reasons, the

correct mass flow rate is not perfectly verified. The mass flow rates experimentally

measured have a relatively strong degree of uncertainty. Many runs are required to

establish the proper boundary conditions to obtain a prefixed value in the mass flow.

Most of the results available for the rotor have been obtained without a downstream

stator row. Finally, it is well known that the best agreement with experimental data

in computing flows within compressors or fans requires the evaluation of viscous

effects (Pierzga and Wood 1985). For all these reasons, the boundary conditions have

been defined on the basis of simple one-dimensional concepts, without running the

code, and the correct mass flow rate is therefore not verified in the calculations.

The three-dimensional rotor-stator interaction simulation provides the user a

huge amount of information. In a first stage of validation, only the results

obtained for a particular rotor shaft position are considered. The results obtained

after four interface reorientations are presented and compared with laser anemometer

measurements for both rotor (Pierzga and Wood 1985) and stator rows (Hathaway et al.

1987). These comparisons allow the user to assess the prediction capability of the

Euler code not only from a qualitative but from a quantitative viewpoint.

Figure 7 to 16 show some computational results obtained for the rotor row, com-

pared with available experimental data and other computational results, obtained

using Denton's code (Denton 1983). The experimental results were obtained with a

laser anemometer for a rotor row without a downstream stator row (Pierzga and Wood

1985). Denton's Euler code, modified to include the effects of boundary layer dis-

placement (in order to obtain the best agreement with experimental data), was applied

to the test case defined in the experiments (Pierzga and Wood 1985).

Figure 7 shows (from left to right) the relative Mach number contours in the

rotor row leading edge, trailing edge, and exit planes. The rotor flow appears to be

strongly three-dimensional and rotational.

Figure 8 shows the relative Mach number contour results obtained with the laser

anemometer (left) and Denton's code (right) at 30-percent span from the tip. Fig-

ure 9 shows the present computational results for the same flow surface. The rela-

tive inlet Mach number is supersonic. The shock location is shown to provide a

clearer picture of the flow in the passage. The shock location was determined by

considering the Mach number and flow angle data in the streamwise direction and by

assuming the starting point of the flow deceleration as the shock front (Pierzga and

Wood 1985). The agreement between data is quite good, with only minor differences.

A normal shock is followed by a second shock. The peak Mach number ahead of the

first shock is about 1.4. This shock is accurately located by the present code with

a peak Mach number of about 1.375. The second shock is shown extending from the

pressure surface to about midpitch, while closer to the suction surface, the location

of the shock is more difficult to determine. The location and the extension of this

second shock is the major difference between the experiment and the analysis. The
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computed Mach number in the rear part of the blade is only slightly lower than the

measured one, 0.85 compared to 0.90. The numerical calculations produce shocks that

are smeared over several grid points, probably due to grid coarseness and neglected

viscous effects. The code prediction capability appears to be quite good, especially

when compared with the accuracy provided by Denton's code, certainly more calibrated

on the specific test case. There is a higher static pressure downstream of the rotor

blade row that reduces the flow velocities in the rear part of the blade passage.

A more quantitative comparison between experimental and theoretical data is the

blade surface velocity comparison. The blade surface velocity data predictions are

the most important in helping the designer tailor the blade shape. Figure i0 shows

the comparison between experimental and theoretical results for the relative Mach

number differences between pressure and suction side at 30-percent span from the tip.

The laser anemometer data are taken at the first point off the blade surface, close

to 5- and 95-percent pitch, and therefore the computational results are selected at

the same locations. The agreement appears to be quite satisfactory in both the

suction and pressure side velocities, with only minor changes in the values on the

rear blade surfaces.

Figure ii shows the relative Mach number contour results obtained with the laser

anemometer (left) and Denton's code (right) at 10-percent span from the tip. Fig-

ure 12 shows the present computational results for the same flow surface. The rela-

tive inlet Mach number is increasingly supersonic with reference to the value in the

section at 30-percent span from the tip. The agreement between data is particularly

good. The presence of a second shock is not clearly evident. The peak Mach number

ahead of the first shock is about 1.4. The shock is accurately located by the

present code with a peak Mach number of about 1.375. The computed Mach number in the

rear part of the blade is now lower than the measured one, 0.875 compared to 0.975,

but the code prediction capability appears to be quite satisfactory, within the

limits of accuracy obtained in a solution of the Euler equations.

Figure 13 shows a comparison between experimental and theoretical results for

the relative Mach number differences between pressure and suction side at 10-percent

span from the tip. The agreement appears to be better than that obtained on the flow

surface at 30-percent span from the tip. Minor differences in the values on the rear

blade surfaces still remain.

Figure 14 shows the relative Mach number contour results obtained with the laser

anemometer (left) and Denton's code (right) at 70-percent span from the tip. Figure

15 shows the present computational results for the same flow surface. The relative

inlet Mach number is now subsonic. The peak Mach number close to the blade leading

edge is lower than that in the experiments, as well as the rear flow Mach number,

especially close to the blade pressure side. The mass flow close to the hub seems to

be strongly reduced with reference to the value obtained in the experiments.

Finally, figure 16 shows the comparison between experimental and theoretical results

for the relative Mach number differences between pressure and suction sides at

70-percent span from the tip. The agreement appears to be worse than that obtained

on the flow surfaces at i0- and 30-percent spans from the tip, and there are strong

differences in surface velocities especially on the blade pressure side.

Most of the differences between experimental and computational results seem to

be due to the influence of the downstream stator row on the rotor flow field. The

flow picture provided by the Euler flow model certainly appears to be better than

expected.
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While experimental data are available in enough detail for the rotor flow (but

these results do not consider a downstream stator row), only a few experimental data

have been provided for the stator row. Despite this, these results have a particular

significance since they have been obtained by considering an upstream rotor row.

Figures 17 to 19 show some computational results obtained for the stator row.

Figure 17 shows (from left to right) the Mach number contours in the stator row

inlet, leading edge, and trailing edge planes. The stator flow appears to be

strongly three-dimensional and rotational from the inlet plane. Figure 18 shows the

Mach number contour results obtained with the laser anemometer (Hathaway et al. 1987)

at 50-percent span from the tip. Figure 19 shows the present computational results

for the same flow surface. The inlet Mach number is subsonic. The agreement between

data is quite good. The peak Mach number on the suction side is predicted fairly

well, with a very similar 0.70 constant Mach number contour. The same is true for

the Mach number in the rear part of the blade, with only minor underestimation, 0.55

compared to 0.59.

The relative influence of stator and rotor rows appears to be well simulated.

CONCLUSIONS

This paper has presented a computer code developed for the analysis of unsteady

three-dimensional flow fields within turbomachine stages. The model takes into

account the unsteady flow fields within complex domains including multi-blade-passage

and multi-blade-row (both fixed and movable) configurations. The flow model has a

particularly wide generality and is thus applicable to the solution of the majority

of problems arising in the aerodynamic and acoustic design of turbomachinery

components.

The multiblock gridding allows one to properly discretize the multi-blade-

passages and multi-blade-row configurations. The partitioning of the whole flow

domain in a specified arrangement of blocks is the only answer to discretize flow

domains requiring a huge number of grid points with strongly varying grid refine-

ments. The block interface treatment probably requires further work to improve the

transfer of information without introducing interface errors.

The finite-volume, flux-corrected interface flux-splitting, total-variation-

diminishing space discretization allows up to third-order accurate space discretiza-

tions without undesired artificial viscosity. The multistep, approximately factored,

implicit time discretization shows an apparently unconditional stability and produces

up to second-order accuracy in time. Finally, the efficient use of the hardware

capability of the Cray Y/MP supercomputer leads to significantly reduced costs of

very complex fluid-dynamic simulation.
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APPENDIXA - COORDINATE TRANSFORMATION

The Euler conservation equations are written in a body-fitted, time-dependent,

curvilinear, reference frame. The coordinate transformation

F = F(x,y,z,t)

_ _(x,y,z,t)

_ _(x,y,z,t)

leads to the following Jacobian and metric quantities expression:

j = x,p(Y,_Z,n - z,_Y,N) - y,p(x,Qz,N - z ax N)

F,x = J-1(y,Qz,N - z,ay,N)

F,y = J-I(z,Qx,N - x,_z,_)

j-1(x - y _x,N)F,z = ,aYN

= F -y,tF - z FF,t --X,t ,X ,y ,t ,z

Q,x = J-_(Y,NZ,F- Y,Fz, N)

_,y -- J'1(x,l_z,_ - z,_,N)

j-i
_,z -- (x,NY,F- Y, Nx,_)

-__x,t0 - y,tn - z n
,t ,x ,y ,t ,Z

+ z,F(x,0Y,N - y,ax,N)

N j-I
,x = (Y,FZ,_- z,FY,Q)

N = J-1 (x,_z -,y ,F z Qyp)

N = J-l(X,py,Q - Y,_,_)
rZ

N = -x N - y N - z N
,t ,t ,X ,t ,y ,t ,z

The contravariant velocities are given as follows:

u+F v+F w+F
U = F,_ ,Y ,z ,t

= u+fl v+fl w+_
V _,x ,y ,z ,t

W = N u + N v + N w + N
,_ ,y ,Z ,t
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APPENDIXB - FLUX-DIFFERENCE'SPLITTING FORMULAE

The evaluation of the vector flux functions at the cell interfaces is performed

by using the values in the neighboring cells according to a one-parameter flux-

difference-splitting scheme. For ease of understanding, the scheme is presented here

in one space dimension. The flux difference at the interface between left and right

cells is expressed as

dF = F r - F 1 = A(f r - fl ) = A. df

where A=F is s quasi-linear matrix, representative of local interface. The
,f

matrix A is evaluated at the interface according to the Roe averaging procedure

(Roe et al. 1984) by using the following relations:

i/2
a = (_zffr)

_1/2 G1/2U _1/2 + (71/2)u = (u I Ul + r r ) /(U1 r

1/2 (;i/2H _1/2 al/2
H = (a I H 1 + r r)/(Gl + r )

Each set of left or right eigenvectors forms a spanning set in state space, and a

basis is constructed using these orthonormal vectors. The interface differential

is thus proportional to the right eigenvectors r [j) of A:

df

df = _ ajr (j)

where aj is the magnitude of the component in the r (j) direction (strength of the
0 th

3 wave, i.e., the jump in the characteristic variable across the interface). The

interface flux difference can therefore be expressed as the composition of a collec-

tion of waves as follows:

dF = _ajb(J)r (j) = dF + + dF- = _÷ajb(J)r (j) + _-ajb(J)r(j)

where b (j) is an eigenvalue of A (speed of jth wave). Symbols _+ and E- denote

summation over positive and negative wave speeds, respectively. The interface flux

can therefore be computed from one of the following first-order expressions:

Fi+i/2 = F 1 + _-ajb(J)r (j)

Fi+i/2 = F r - _+ajb(J)r (j)

Fi+i/2 = 1/2 IF 1 + F r - _aj{b(J){r(J) 3

The addition of a corrective flux to the previous formulae produces higher

spatial accuracy flux-difference-splitting formulae. The family of these formulae is

written as follows:

F^i+i/2 = Fi+I/2 + (I + _)/4(dF+l+i/2 - dF-i+l/2) + (i + _)/4(dF+i_i/2 - dF-i+3/2)

where the principal part of the truncation error is

(1/3 - _)/4(_x)2F
tXXX
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APPENDIXC - FLUXLIMITERS

Total-variation-diminishing flux expressions makeuse of flux limiters. These
limiters are generally madedependent on the values of a parameter _ proportional
to the change in the characteristic variables across nearby interfaces:

_(J) = b(J)i÷,/2a j = b(J)i+,/21(J)i+*/2 i+*/2 i+'2" dfi+y*/2

where 1 (j) is the left eigenvector of A. The "minmod" limiter is defined as

follows :

Lj (m, n) = minmod ( _ (j) pc(i+m/2' J)i+n/2 )

minmod (x,y) = sign(x)max{0, min[Ix I, ysign(x)]}

where p is a compression parameter assumed to be equal to (3 - #)/(1 - _). The

"superbee" limiter is defined as follows:

Lj(m,n) = cmplim(_(J)i÷m/2, _(J)i÷n/2)

cmplim(x,y) = sign(x)max{O, min[Ix I , pysign(x)], min[_Ix I , ysign(x)]}

where the compression parameter is now assumed to be _=2. The "van Leer" limiter is

finally defined as follows:

Lj(m,n) = vanlim(_ (j) (J)i+m/2' E i+n/2)

vanlim(x,y) = (xy + Ixyl)l¢x + y)

15



REFERENCES

Dawes, W.N., 1986a, "Computation of Off-Design Flows in a Transonic Compressor

Rotor," Journal of Engineering for Gas Turbines and Power, Vol. 108, No. I,

pp. 144-150.

Dawes, W.N., 1986b, "A Numerical Method for the Analysis of 3D Viscous Compressible

Flow in Turbine Cascades; Application to Secondary Flow Development in a Cascade

with and without Dihedral," ASME Paper 86-GT-145.

Dawes, W.N., 1987, "Application of a Three-Dimensional Viscous Compressible Flow

Solver to a High Speed Centrifugal Compressor Rotor-Secondary Flow and Loss

Generation," Turbomachinery - Efficiency Prediction and Improvement, Mechanical

Engineering Publications, England, pp. 53-62.

Denton, J.D., 1983, "An Improved Time-Marching Method for Turbomachinery Flow

Calculation," Journal of Enqineering for Power, Vol. 105, No. 3, pp. 514-524.

Dring, R.P., Joslyn, H.D., Hardin, L.W., and Wagner, J.H., 1982, "Turbine Rotor-

Stator Interaction," Journal of Engineering for Power, Vol. 104, No. 4,

pp. 729-742.

Hah, C., 1984, "A Navier-Stokes Analysis of Three-Dimensional Turbulent Flows Inside

Turbine Blade Rows at Design and Off-Design Conditions," Jour__nal of Engineering

for Power, Vol. 106, No. 2, pp. 421-429.

Hah, C., 1986, "A Numerical Modeling of Endwall and Tip-Clearance Flow of an Isolated

Compressor Rotor," Journal of Engineering for Gas Turbines and Power, vol. 108,

No. i, pp. 15-21.

Hathaway, M.D., 1986, "Unsteady Flows in a Single-Stage Transonic Axial-Flow Fan

Stator Row," NASA TM-88929.

Hathaway, M.D., et al., 1987, "Measurements of the Unsteady Flow Field Within the

Stator Row of a Transonic Axial-Flow Fan II - Results and Discussion," ASME

Paper 87-GT-227. (Also, NASA TM-88946.)

Janus, J.M., 1989, "Advanced 3-D CFD Algorithm For Turbomachinery," Ph.D. Disserta-

tion, Mississippi State University.

Moore, J., and Moore, J.G., 1985, "Performance Evaluation of Linear Turbine Cascades

Using Three-Dimensional Viscous Flow Calculations," Journal of Engineering for

Gas Turbines and Power, Vol. 107, No. 4, pp. 969-975.

Pierzga, M.J., and Wood, J.R., 1985, "Investigation of the Three-Dimensional Flow

Ffeid Within a Transonic Fan Rotor: Experiment and Analysis," Journal of

Engineering for Gas Turbines and Power, Vol. 107, No. 2, pp. 436-449.

Roe, P.L., and Pike, J., 1984, "Efficient Construction and Utilization of Approximate

Riemann Solutions," Computing Methods in Applied Sciences and Engineering 6, R.

Glowinski and J.L. Lions, eds., North Holland, New York, pp. 499-518.

16



Roscoe, D.V., Shamroth, S.J., and McDonald, H., 1984, "An EnsembleAveraged Navier-
Stokes Calculation Procedure for the Prediction of Two- and Three-Dimensional
Radial Diffuser Flow Fields," Computational Methods in Turbomachinery,

Mechanical Engineering Publications, England, pp. 67-76.

Shamroth, S., McDonald, H., and Briley, W.R., 1982, "Application of a Navier-Stokes

Analysis to Transonic Cascade Flow Fields," ASME Paper 82-GT-235.

Steger, J.L., and Warming, R.F., 1979, "Flux Vector Splitting of the Inviscid

Gasdynamic Equations with Application to Finite Difference Methods," NASA TM-

78605.

Suder, K.L., et al., 1987, "Measurements of the Unsteady Flow Field Within the Stator

Row of a Transonic Axial-Flow Fan I - Measurement and Analysis Technique," ASME

Paper 87-GT-226. (Also, NASA TM-88945.)

Van Hove, W., 1984, "Calculation of Three Dimensional Inviscid Rotational Flow in

Axial Turbine Blade Rows," Journal of Engineering for Gas Turbines and Power,

Vol. 106, No. 2, pp. 430-436.

Weinberg, B.C., Yang, R.J., McDonald, H., and Shamroth, S.J., 1986, "Calculations of

Two- and Three-Dimensional Transonic Cascade Flow Fields Using the Navier-Stokes

Equations," Journal of Engineering for Gas Turbines and Power, Vol. 108, No. i,

pp. 93-102.

Whitfield, D.L., and Janus, J.M., 1989, "A Simple Time-Accurate Turbomachinery

Algorithm with Numerical Solutions of an Uneven Blade Count Configuration," AIAA

Paper 89-0206.

Figure 1.--Axial and circumferential partition of the flow domain.
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Figure6.--Rotorandstatorbladepassagecomputational
grids.

Figure7.--Theoretical(presentcode)relaliveMachnumbercontoursintheleadingedge,
trailingedge,andoutletplaneoftherotorrow(resullsobtainedwithdownstreamstator
row).
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Figure8.--Experimental (left) and theoretical (Denton's code, right) relative Mach numbercontoursin rotor row at 30-percent spanfrom the
tip (Pierzga andWood, 1985, results obtained without downstream statorrow).
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Figure 9.--Theoretical (present code) relative Mach number contours in rotor row at
30-percent span from tip (results obtained with downstream stator row).

22



1.8 m

E
t-

"8

1.2 w

.8 m

.4
-3O

] l I l I
0 30 60 90 120

Percent axial chord

Figure lO.--Comparison between theoretical (present
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relative Mach number distributions in the rotor row at
30-percent span from the trip.
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Figure 11.--Experimental (left) and theoretical (Denton's code, right) relativeMach number contours in rotor row at lO-percent span from tip
(Pierzga and Wood, 1985, results obtained without downstream stator row).
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Figure 12.--Theoretical (present code) relative Mach number con-
tours in rotor row at lO-percent span from tip (results obtained
with downstream stator row ).
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Figure 13.--Comparison between theoretical (present
code, results obtained with a downstream stator row)
and experimental (Pierzga and Wood, 1985, results
obtained without a downstream starer row) blade
relative Mach number distributions in the rotor row at
lO-percent span from the trip.
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Figure 14.--Experimental (left) and theoretical (Denton's code, right) relative Mach number contours in rotor row at 70-percent span from
tip (Pierzga and Wood, 1985, results obtained without downstream stator row).

Figure 15.--Theoretical (present code) relative Mach number con-
tours in rotor row at 70-percent span from tip (results obtained
with downstream stator row).
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Figure 16.--Comparison between l_eoretical (present
cede, results obtained with a downstream stator row)
and experimental (Pierzga and Wood, 1985, results
obtained without a downstream stator row) blade
relative Mach number distributions in the rotor row at
70-percent span from the trip.
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Figure 17.--Theoretical (present code) Mach number contours in the inlet, leading edge, and trailing
edge planes of the stator row (results obtained with an upsffeam rotor row).
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Figure 18.--Experimental Mach number comours in stator row at
50-percent span from tip (Hathaway et al., 1987, results obtained
with an upstream rotor row).
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Figure19.--Theoretical(presentcode)Machnumbercontoursinstalorrowat50-percent
spanfromtip(resultsobtainedwithanupstreamrotorrow),
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